If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-21x-190=0
a = 1; b = -21; c = -190;
Δ = b2-4ac
Δ = -212-4·1·(-190)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{1201}}{2*1}=\frac{21-\sqrt{1201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{1201}}{2*1}=\frac{21+\sqrt{1201}}{2} $
| 4x-2x+3=2x+2x-3 | | 2(x-6)=4x-10 | | 2x-12=4x-10 | | 1.1=s/6.3 | | 71-5x=9x13 | | -3.3y=-44.88 | | 5,6+0,6x=0,3x-1,3 | | 62.54=11.8h | | 6x^2+7x-98=100 | | 12.06=-4w | | x+.25x=600 | | 6=s/6 | | 10a=-53.56 | | 10c^2-21c=4c+6 | | 4/9y−12=4/1y−4 | | -1.2x=10.08 | | (3x+2)(2x+1)=100 | | 13n/49=1417/1485 | | (x+1)(x-7)=84 | | 0=15/14p | | k^2-8=56 | | 39=y-101 | | 19.53+a=64 | | 5x+15=-3-9 | | 0.2y-0.48=0.1(2.76-y) | | 3.5t+18.75=1.5-t | | 7x+3/6=-5x-4/2 | | 3.2p+7=9.56 | | 5(1.4x+3)+3(2-2.1x)=7 | | 7=-3c-27 | | 7+3.2p=9.56 | | 36-(3c+4)=4(c+7)+c |